

Micropile for Applying to Artificial - Ground above Railway Site

Young-Eun Jang (Korea University of Science and Technology)

Jin-tae Han (Korea Institute of Construction Technology)

Changho Choi (Korea institute of Construction Technology)

Table of contents

- 1. Research background
- 2. Development
- 3. Numerical analysis
- 4. Analysis results
- 5. Conclusion & future work

Research background

- **Artificial ground**
 - Definition: reinforced concrete deck above the unused site
 - Purpose: utilization of unused site for residential area
 - Advantage: creating more space for the construction site

[Real cases of residential area of Hong Kong, Japan and Korea]

Research background

- Housing project in Korea
 - "Happy house" project on the artificial ground by Korean government
 - 7 Railroad sites out of 15 target sites
 - Technical needs for the foundation type: space/speed for the construction

[Site map for the housing project, Korea]

[Technical needs for the construction of the space on the artificial ground]

Development

- New concept of micropile
 - EBP(Extended Branches and Plates) pile systemroot shaping on the cast-in-place concrete pile
 - bearing capacity ↑, 30-50% of construction speed ↑, 30-60% of quantity ↓

: concept of EBP pile system + improvement of soil

[Concept of EBP pile system]

Development

- Concept of waveform micropile
 - Waveform micropile
 - : shear key shaping of the grout body with soil jet grouting method
 - Main factor: length of shear key & spacing between shear key
 - e.g) $S=0 \rightarrow skin friction(o)$, side friction(x)
 - $S>0 \rightarrow skin friction(o), side friction(o)$

Development

- **Concept of waveform micropile**
 - Waveform micropile
 - : shear key shaping of the grout body with soil jet grouting method
 - Main factor: length of shear key & spacing between shear key
 - e.g) $S=0 \rightarrow skin friction(o)$, side friction(x)
 - $S>0 \rightarrow skin friction(o), side friction(o)$

Numerical Analysis

• 3 types of analysis model with different shape

Analysis type					
C1	General micropile D=180mm(fck*=30MPa), Length=16m	C2	Micropile with soil jet grouting $D_1=D_2=300$ mm, Length=13.7m		
Waveform micropile $D_1=500$, $D_2=300$ mm, Length=13.7m					
С3	L:0.5m, S:0.5m	C4	L:0.5m, S:2.5m		
C5	L:1m, S:0	C6	L:1m, S:1m		

Numerical Analysis

- Vertical bearing capacity with Plaxis v8.0
 - triangular elements with fifteen nodes for the soil and pile modeling
- Lateral bearing capacity with OpenSees
 - API (1987) p-y curve to describe the pile-soil interaction

[Soil-pile modelling]

- Vertical bearing capacity
 - Ultimate load: C2(3,720kN), C3 & C4(2,450kN) and C1(2,310kN)
 - Displacement of C3(40%) < C1 → higher bearing capacity
 - Displacement of C3 < displacement of C4

- Vertical bearing capacity
 - Comparison of analysis result with the waveform micropiles
 - Ultimate load: same values due to same material yield strength
 - Displacement ↓, number and length of shear key ↑

- Vertical bearing capacity
 - Load transfer curve: general micropile vs. waveform micropile(δ =10mm)
 - Waveform micropile: skin friction increases → soil depth of 0-3.5m
 (better achievement of skin friction at relatively soft soil)

[Skin friction along the pile depth]

- Lateral bearing capacity
 - Lateral displacement of C5(60%) < displacement of C1
 - Decrement of lateral displacement at C5, C6: about 10% less than C2

- Lateral bearing capacity
 - Max. compressive stress: C1(89.2MPa), C2(17.5MPa), C5 & C6(3.8MPa)
 - Waveform micropile : compressive strength ↓, higher bearing capacity

[Pile lateral displacement, moment, compressive strength]

•			
Case	δmax(m)	Mmax(kN·m)	о тах(Мра)
C1	0.216	51.1	89.2
C2	0.088	46.3	17.5
C5	0.079	46.7	3.8
C6	0.081	46.3	3.8
Decreases			▼ Decreas

[Moment, p=30kN]

Conclusion & future work

Conclusion

- Waveform micropile
 - :higher bearing capacity compared to the general micropile
- Vertical bearing capacity: increases as the length of the shear key ↑, space ↓
- Lateral bearing capacity: affected by shear key less

Future work

- Laboratory test: to determine the optimal shape & w/c ratio for the grout body
- Filed test
 - 1. Determination of waveform shape: shape for the better performance
 - 2. Evaluation of constructability
 - 3. Investigation the effects of various soil condition

Thank you!

This research was supported by a grant form "Design and construction of artificial ground with the vertical spaces above existing urban infrastructure" which is funded by The Korea Institute of Construction Technology.